
1. Introduction
Many problems in weather and climate, such as subseasonal and decadal forecasting, involve initializing coupled 
Earth System models to predict future states (e.g., Laloyaux et al., 2016; Lea et al., 2015; Penny & Hamill, 2017; 
Penny et al., 2017; Yang et al., 2013; Zhang et al., 2005). Initialization typically involves using observations of 
the system to improve an existing estimate, such as a forecast from an earlier time, using data assimilation (DA). 
In addition to a prior estimate of the state, DA requires an estimate of the errors, which significantly elevates the 
demands on an already computationally intensive set of calculations. This burden has slowed experimentation 
and algorithm development in coupled DA (S. G. Penny et  al.,  2019), and promotes implementations where 
coupled DA is approximated. Building on recent work in coupled paleoclimate DA (Perkins & Hakim, 2021), 
we test the hypothesis that a stochastically forced linear emulator of the coupled atmosphere–ocean dynamics 
can be used for coupled DA to improve subseasonal forecasts. We provide a concise proof-of-concept calculation 
using a Kalman filter to process observations drawn from reanalysis data to assess the impact of coupled DA on 
analysis and forecast errors.

In the context of atmosphere–ocean coupled forecasting, strongly coupled DA (SCDA) involves assimilating 
observations to apply updates across the domain interface. This allows, for example, relatively more abundant 
atmospheric observations to inform the ocean analysis. To work well, SCDA requires an accurate estimate of 
the covariance between the atmospheric observations and the ocean variables (e.g., Sluka et al., 2016), which 
contributes to the aforementioned computational demands. A range of weakly coupled DA (WCDA) approaches 
approximate SCDA. A common one, which we adopt here, is to use separate DA systems for the atmosphere and 
the ocean, in order to generate independent analyses in each domain using only the observations in that domain 
(S. Penny et al., 2019). For WCDA, coupling occurs during the forecast step, when a coupled model evolves the 
state from the analysis to the next assimilation time. A significant drawback of WCDA is that observations of one 
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domain do not directly affect the other, which could lead to imbalances between the atmosphere and ocean during 
the forecast step (Mulholland et al., 2015; Zhang, 2011).

In this study, we use SCDA to generate initial conditions for subseasonal forecasts. To break the computational 
bottleneck for SCDA, we use a linear inverse model (LIM; Albers & Newman,  2019; Newman et  al.,  2003; 
Penland & Sardeshmukh, 1995) for coupled atmosphere–ocean prediction. Although LIMs have long been used 
for subseasonal prediction (e.g., Albers & Newman, 2019; Newman et al., 2003), we believe the application to 
SCDA is novel. The LIM is trained on Climate Forecast System Reanalysis (CFSR) data (Saha et al., 2014), and 
applied to DA experiments using a Kalman filter on observations of both atmosphere and ocean variables. Two 
novel aspects of this approach, not currently possible with operational subseasonal coupled forecasts systems, 
are: (a) use of the full covariance matrix, rather than an estimate derived from a small ensemble; and (b) SCDA is 
performed with a full Kalman filter, rather than an approximation. This proof-of-concept calculation may also be 
useful for developers of SCDA systems, since LIMs trained on the output of complex models are straightforward 
to develop for prototype applications and hypothesis testing. For example, since the LIM forecasts are skillful 
beyond 50 days, this approach may prove useful for improving operational forecasts on subseasonal to seasonal 
timescales.

2. Methods and Data
Here we describe the data (Section 2.1), linear inverse modeling (Section 2.2), Kalman filtering (Section 2.3), 
observations and their errors (Section 2.4), and validation and error quantification (Section 2.5).

2.1. Data

All data for this study are taken from the CFSR (Saha et al., 2014), which is defined on global lat–lon grids. 
Calculations related to training pertain to the period 1979–2003; validation is performed over 2004–2010. Grid-
ded CFSR data is available every 6 hr, which we first average to daily, and then to a running 5-day mean. The 
seasonal cycle is then defined at each grid point by the leading three Fourier harmonics of the annual cycle 
averaged over the training period, and removed from the 5-day-average data. The LIM state vector is defined by 
the following variables: 2 m air temperature (T2m), sea-surface temperature (SST), u and v wind components at 
850 hPa (u850 and v850), and outgoing longwave radiation (OLR). Each field is truncated to the leading 30 empir-
ical orthogonal functions (EOFs), which are computed from grid point values area weighted by cos(ϕ) 1/2, where 
ϕ is latitude. This truncation retains about 50%–60% of the variance for all variables but OLR (33%) (Table S1 
in Supporting Information S1). Each variable is standardized after truncation to unit variance. Increasing the 
number of EOFs leads to overfitting the LIM, although results are insensitive to the exact truncation value.

2.2. Linear Inverse Model

LIMs capture the linear dynamics of anomalies about a chosen mean state, where the anomalies have zero 
mean, with zero-lag time-mean covariance matrix C0. For state vector x, a LIM is defined by (e.g., Penland & 
Sardeshmukh, 1995)

𝑑𝑑𝐱𝐱

𝑑𝑑𝑑𝑑
= 𝐋𝐋𝐱𝐱 + 𝜉𝜉𝜉 (1)

where t is time, L is a matrix containing the deterministic dynamics, and ξ is a random vector that is uncorrelated 
in time (but has correlations in the state dimension). The first integral of (1) yields a mapping from any initial 
condition to the forecast at lag δt,

𝐱𝐱(𝑡𝑡 + 𝛿𝛿𝑡𝑡) = 𝐆𝐆𝛿𝛿𝑡𝑡𝐱𝐱(𝑡𝑡) + 𝐧𝐧, (2)

where Gδt is related to L by

𝐆𝐆𝛿𝛿𝛿𝛿 = exp(𝐋𝐋𝛿𝛿𝛿𝛿) (3)

and n is the integrated contribution from the random vector, ξ. Assuming that the state and the error are uncorre-
lated, (2) gives a forecast equation for the error covariance
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cov(𝐱𝐱(𝑡𝑡 + 𝛿𝛿𝑡𝑡), 𝐱𝐱(𝑡𝑡 + 𝛿𝛿𝑡𝑡)) = 𝐆𝐆𝛿𝛿𝑡𝑡cov(𝐱𝐱(𝑡𝑡), 𝐱𝐱(𝑡𝑡))𝐆𝐆
𝑇𝑇

𝛿𝛿𝑡𝑡
+ 𝐍𝐍𝛿𝛿𝑡𝑡 (4)

where Nδt is the stochastic error covariance specific to the time lag δt. Since (4) applies to any initial condi-
tion, including C0, and the time-mean covariance statistics are stationary, we may solve for Nδt algebraically 
(Penland, 1989, Equation 11):

𝐍𝐍𝛿𝛿𝛿𝛿 = 𝐂𝐂0 −𝐆𝐆𝛿𝛿𝛿𝛿𝐂𝐂0𝐆𝐆
𝑇𝑇

𝛿𝛿𝛿𝛿
. (5)

We calibrate the LIM using CFSR data during the training period by determining the least squares solution to 
(2) for δt = 5 days, and then recover L from (3). For any lead time δt, Gδt is defined from L by (3) and Nδt by (5).

2.3. Kalman Filter

Given a set of observations and a prior estimate of the state mean and covariance, the Kalman filter gives the best 
linear unbiased estimator for the analysis mean

𝐱𝐱𝒂𝒂 = 𝐱𝐱𝒇𝒇 +𝐊𝐊(𝐲𝐲 −𝐇𝐇𝐱𝐱𝒇𝒇 ), (6)

and covariance

𝐏𝐏𝒂𝒂 = (𝐈𝐈 −𝐊𝐊𝐊𝐊)𝐏𝐏𝒇𝒇 . (7)

The Kalman gain matrix is given by

𝐊𝐊 = 𝐏𝐏𝑓𝑓𝐇𝐇
𝑇𝑇
[

𝐇𝐇𝐏𝐏𝑓𝑓𝐇𝐇
𝑇𝑇
+ 𝐑𝐑

]−1

, (8)

where xf and Pf are the prior mean and covariance, respectively, xa and Pa are the analysis mean and covariance, 
respectively, y is a vector of observations having error covariance R, and H is the observation operator, which 
maps from the state to the observations. Having solved for xa and Pa at one time, (2) (with n = 0) and (4), respec-
tively, are solved for xf and Pf at the next time that observations are available, which allows (6–7) to be solved 
again; this process is repeated 1 day at a time for the entire validation period.

2.4. Observations

Observations are drawn once each day for every variable directly from the CFSR gridded data, and estimated 
from the truncated EOF basis of the LIM,

𝐲𝐲 = �̂�𝐇�̂�𝐱 = 𝐇𝐇𝐱𝐱 + 𝜖𝜖𝜖 (9)

where 𝐴𝐴 �̂�𝐱 is the CFSR lat–lon gridded data and x is the truncation of 𝐴𝐴 �̂�𝐱 to the EOF basis for the variable. The obser-
vation operator in the LIM basis, H, is related to the observation operator on the lat–lon grid, 𝐴𝐴 �̂�𝐇 , by 𝐴𝐴 𝐇𝐇 = �̂�𝐇𝐇𝐇 , 
where the (30) columns of U are the EOFs. Observations are defined on a regular grid every 20° latitude, and in 
longitude every 20°/cos(ϕ), where ϕ is latitude; observation locations are shown on Figure 3.

Since observations are drawn directly from the CFSR analysis grids by 𝐴𝐴 �̂�𝐇 , the observation error covariance in 
(8), R, is determined completely by representativeness error from the EOF truncation: R = cov(ϵ, ϵ). However, 
the truncation error for each variable is not independent of the resolved components of the other variables, so we 
define a second observation operator by removing a linear estimate of the dependent part of the truncation error,

𝜖𝜖 = 𝐀𝐀𝐀𝐀𝐀𝐀 + 𝐞𝐞. (10)

Matrix A is found by least-squares regression to minimize var(e) during the training period, and the observation 
error covariance matrix in this case is given by R = cov(e, e). We shall refer to use of this observation operator 
and observation-error covariance as “regression-R,” and use of (9) and R = cov(ϵ, ϵ) as “control-R.” For both 
cases, the correlated portion of the observation errors results from the spatial dependence of the EOF truncation, 
and these errors are assumed to be uncorrelated in time.
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2.5. Error Quantification and Validation

Errors are measured in observation space and on the full lat–lon grid. The misfit to observations of the 1-day 
forecast is defined as

𝐝𝐝 = 𝐲𝐲 −𝐇𝐇𝐇𝐇𝒇𝒇 . (11)

If all errors are consistently specified, the covariance of the misfits averaged over all validation times should 
approximately equal the innovation covariance from (8) (e.g., Houtekamer & Mitchell, 1998),

cov(𝐝𝐝, 𝐝𝐝) ≈ 𝐇𝐇𝐇𝐇𝑓𝑓𝐇𝐇
𝑇𝑇
+ 𝐑𝐑. (12)

We note that, because H, R, G, and N are constant, (4) and (7) reveal that Pf and Pa are as well, so that the right-
side of (12) has a single value.

Errors on the lat–lon grid are defined with respect to the truncated EOF basis. We compute the mean-squared 
error (MSE) of the analyses and forecasts to 50 days lead time during the validation period at all grid points, and 
area weight the global mean of these values. When comparing different experiments, we compute the percentage 
change in global-mean MSE. For brevity, we limit the analysis of atmospheric variables to T2m; results for the 
others are qualitatively similar.

3. Results
We present results for WCDA and SCDA experiments, compared to separate control experiments for the atmos-
phere and ocean. The atmospheric control experiment consists of cycling DA on atmospheric observations only, 
and the model used in the forecast step ((2) with n = 0, and (4)) is limited to the atmospheric elements of L. Simi-
larly, the oceanic control experiment consists of cycling DA on SST observations only, and the model used in the 
forecast step is limited to predicting SST from SST alone. We note that the control experiments are not directly 
comparable to operational systems for the atmosphere and ocean, since the LIM has no explicit boundary condi-
tions, and atmosphere–ocean coupling is implicit from the training of the LIM variables. The weakly coupled DA 
(WCDA) experiment is defined by a coupled forecast using the full LIM, with separate DA in the atmosphere and 
ocean, and no “cross-domain” covariances. Specifically, WCDA sets to zero those entries of Pf corresponding to 
covariances between SST and the atmospheric variables. The SCDA experiment is defined by a coupled forecast 
using the full LIM, and full coupling in the analysis, so that atmospheric observations affect the SST analysis and 
vice versa. Observations are assimilated once per day to produce an analysis, from which a single forecast is made 
to 50 days using (2) (with n = 0, representing the average over an infinitely large ensemble). This results in 2556 
daily analyses and forecasts during the validation period.

Looking first at the fit of the 1-day forecast to observations, from (12) we compute for each observation i the 
calibration ratio

cov(𝐝𝐝, 𝐝𝐝)𝑖𝑖𝑖𝑖∕
[

𝐇𝐇𝐇𝐇𝑓𝑓𝐇𝐇
𝑇𝑇
+ 𝐑𝐑

]

𝑖𝑖𝑖𝑖
 (13)

and summarize the distribution over all observations in violin plots (Figure 1). For the control-R case, where 
observation errors are defined simply by truncation error, results for all experiments show smaller errors in the 
mean analysis than expected from the innovation variance. This over-dispersion is largely corrected when using 
regression-R, with particularly good calibration for SCDA and all experiments for SST. For T2m, WCDA and the 
control experiment show over-dispersion for regression-R, with longer tails toward larger values. For the remain-
der of the results we adopt regression-R.

For T2m forecasts over the 7-year validation period, the global-mean MSE increases rapidly with lead time up 
to about 10 days, and then increases more slowly before saturating around 20–30 days (Figure 2, top panel). As 
an illustration of the spatial distribution of errors, Figure 3 shows that at a lag of 10 days, errors are largest over 
extratropical land masses and the Antarctic coastline. Errors grow more slowly in SST (Figure 2, top panel), and 
are not near saturation at 50 days. Spatially, SST errors are localized in the eastern tropical Pacific Ocean, and in 
the midlatitudes (Figure 3).
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Comparing the coupled-DA experiments against the respective control experiments in the atmosphere and 
ocean reveals that, in the global-mean MSE, WCDA errors are larger than the control case (Figure 2, bottom 
panel), although the spatial distribution of errors at 10-day lead time reveals improvements in the tropical Pacific 
(Figure 4, upper left). For SCDA, the global-mean MSE shows little change from the control case in the analysis, 
and a slow increase in error during the first 20 days before leveling off at about 2% (Figure 2, bottom panel). The 
error increase derives mainly from the Northern Hemisphere extratropics, with improvements to 20 days in the 
tropics and Southern Hemisphere (Figure S1 in Supporting Information S1). Improvements in T2m cover a larger 
fraction of the tropics compared to WCDA, and portions of the Southern Hemisphere, with larger increases in 
error relative to the control over large areas of the Northern Hemisphere (Figure 4, lower left). For SST, SCDA 
shows large improvement relative to the control case, over 20% in the global-mean MSE at short leads (Figure 2, 
bottom panel), and about 40% over large areas (Figure 4, lower right). Our SST improvements are qualitatively 

Figure 1. Violin plots of calibration ratio ((13); unitless) over all T2m observations (left) and sea-surface temperature observations (right). Results labeled “control-R” 
apply to the observation error covariance defined exclusively by truncation error (9); those labeled “regression-R” remove the component of error linearly predictable 
from the truncated state using (10). Data assimilation (DA) experiments are strongly coupled data assimilation, weakly coupled DA, ocean only, and atmosphere only. 
Bold black lines denote the median of each distribution.

Figure 2. (Top) Global-mean mean-squared error over the validation period for the control experiments where only 
atmospheric observations are assimilated using the atmospheric component of the linear inverse model (LIM) (dashed line 
shows T2m) and sea-surface temperature (SST) observations are assimilated using the SST components of the LIM (solid 
line). (bottom) % change of Strongly coupled data assimilation (red) and weakly coupled data assimilation (blue) from the 
control experiments for T2m (dashed) and SST (solid).
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similar to those of Sluka et al. (2016) in the tropical Pacific and near the midlatitudes, although they find larger 
improvements over the sub-Arctic North Atlantic.

An additional experiment, aimed at exploring the degradation in T2m forecasts for SCDA, is the same as the 
SCDA case, but excludes SST observations from assimilation (black lines in Figure 2, bottom panel). In this case, 
SCDA improves upon the control for T2m analyses and forecasts up to about 5 days lead, before slowly converging 
upon the previous SCDA results at long leads. SST analysis improvements are much smaller than for the SCDA 
case, but the improvements increase during the forecast, such that they become about as large as the main SCDA 
case after about 25 days. Further insight is provided by Figures S2 and S3 in Supporting Information S1, which 
show that SCDA substantially improves both SST and T2m forecasts globally during the training period. While 
the atmosphere-only case during the training period produces similar results to the validation period (cf. Figure 
S2 in Supporting Information S1, top panel with Figure 2, top panel), the SST-only case has smaller errors during 
the training period, suggesting that low-frequency SST variability (e.g., ENSO) is not well sampled during the 
LIM training period.

Figure 3. Spatial pattern of mean-squared error over the validation period for 10-day forecasts of (left) T2m and (right) sea-surface temperature. Observation locations 
are denoted by white dots.

Figure 4. Spatial pattern of % change in mean-squared error during the validation period for 10-day forecasts of (top) weakly coupled data assimilation and (bottom) 
strongly coupled data assimilation. (left) T2m and (right) sea-surface temperature.
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4. Concluding Summary
Strongly coupled DA is essential for Earth System analysis and prediction because it allows observations to 
consistently influence components of the system other than those directly measured. This is particularly impor-
tant when the dynamics and/or observing density are very different across components, as is the case for the 
atmosphere and ocean. Despite this promise, progress on strongly coupled DA has been slowed due to the enor-
mous computational burden of both simulation and assimilation, which has promoted the use of weakly coupled 
approximations where assimilation is performed independently in each domain. Here we used an empirical 
model of coupled atmosphere–ocean dynamics, the LIM, as a low-dimensional Earth System emulator to test 
two approaches to coupled DA. The LIM is skillful to at least 50 days, and highly computationally efficient, 
so that when integrated with a Kalman filter, it allows us to compare the performance of SCDA to WCDA and 
single-domain control experiments.

For a LIM calibrated on CFSR data, and DA experiments on observations drawn from CFSR during a 7-year 
validation period, we find that SCDA produces large improvements to the ocean control case, which has just the 
ocean component of the LIM and SST observations. SCDA SST analysis errors are reduced by over 20% in the 
global-mean compared to the control case, and 40% over local regions. In contrast, WCDA SST analysis errors 
are reduced by only about 5% in the global mean compared to the control, and error reduction nearly vanishes 
by 50 days into the forecast. Forecasts derived from SCDA analyses show that the SST analysis error reduction 
persists through the forecast with over 10% improvement compared to the control at 50-day lead. Outside of the 
tropics, atmospheric forecasts are degraded in WCDA and SCDA relative to the control cases, although SCDA 
has smaller error than WCDA at all forecast leads. While we show that a portion of this change in performance is 
due to the assimilation of SST observations, comparison with results during the training period suggests that the 
degradation appears to result mainly from non-stationary statistics.

We also show that SCDA has the best probabilistic reliability when comparing 1-day forecasts with observations. 
This result depends on consistent specification of observation error statistics, which in our experiments is deter-
mined entirely by representativeness error due to truncation onto the LIM EOF basis. We find that truncation 
error correlates with the LIM basis, and removing this relationship in the forward operator (H) results in SCDA 
analyses that are well calibrated.

This work provides a proof-of-concept demonstration that low-dimensional Earth System emulators are useful 
for testing approaches to coupled DA. As such they may provide an important tool for rapidly prototyping exper-
iments before deployment in the full modeling system. Moreover, since the forecasts are skillful beyond 50 days, 
future research may explore how to use this approach for operational forecasting on subseasonal to seasonal 
timescales. This work was also limited by the sample size afforded by the CFSR data set, and future work may 
also explore the role of sample size in training the LIM to resolve coupled atmosphere-ocean variability for DA 
applications.

Data Availability Statement
Climate Forecast System Reanalysis data may be found at: https://cfs.ncep.noaa.gov/cfsr/. Software developed for 
this research is available at https://doi.org/10.5281/zenodo.6513266.
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